MemoryDataset
kedro.io.MemoryDataset ¶
MemoryDataset(data=_EMPTY, copy_mode=None, metadata=None)
Bases: AbstractDataset
MemoryDataset loads and saves data from/to an in-memory
Python object. The _EPHEMERAL attribute is set to True to
indicate MemoryDataset's non-persistence.
Example:
from kedro.io import MemoryDataset
import pandas as pd
data = pd.DataFrame({"col1": [1, 2], "col2": [4, 5], "col3": [5, 6]})
dataset = MemoryDataset(data=data)
loaded_data = dataset.load()
assert loaded_data.equals(data)
new_data = pd.DataFrame({"col1": [1, 2], "col2": [4, 5]})
dataset.save(new_data)
reloaded_data = dataset.load()
assert reloaded_data.equals(new_data)
Parameters:
-
data(Any, default:_EMPTY) –Python object containing the data.
-
copy_mode(TCopyMode | None, default:None) –The copy mode used to copy the data. Possible values are: "deepcopy", "copy" and "assign". If not provided, it is inferred based on the data type.
-
metadata(dict[str, Any] | None, default:None) –Any arbitrary metadata. This is ignored by Kedro, but may be consumed by users or external plugins.
Source code in kedro/io/memory_dataset.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | |
_describe ¶
_describe()
Source code in kedro/io/memory_dataset.py
78 79 80 81 82 83 | |
_exists ¶
_exists()
Source code in kedro/io/memory_dataset.py
72 73 | |
_release ¶
_release()
Source code in kedro/io/memory_dataset.py
75 76 | |
load ¶
load()
Source code in kedro/io/memory_dataset.py
60 61 62 63 64 65 66 | |
save ¶
save(data)
Source code in kedro/io/memory_dataset.py
68 69 70 | |